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Problem Set 5

This problem set explores greedy algorithms, spanning trees, and related topics.  We hope that it  
helps cement your understanding of “greedy stays ahead” arguments, exchange arguments, and 
properties of trees.

Please be sure to write your answers different problems on separate pieces of paper to make 
it easier for us to grade.  Also, please put your name on each page of your assignment.

As always, please feel free to drop by office hours or send us emails if you have any questions. 
We'd be happy to help out.

This problem set has 35 possible points.  It is weighted at 12% of your total grade.

Good luck, and have fun!

Due Monday, August 5 at 2:15 PM
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Problem One: Fixing an MST (8 Points)
Suppose that you've computed an MST T* for a graph G = (V,  E).  Afterwards,  you add a new 
edge (u,  v)  ∉ E to the graph with cost  c(u,  v).  Depending on the shape of the graph, the initial 
edge weights, and the weight of (u, v), your old MST T* might not necessarily be an MST of the 
new graph G' = (V, E  {(∪ u, v)}).

Assume that all edge weights in G' are distinct (which means that the edge weights in G are also 
distinct).  Design an O(n)-time algorithm that determines whether T* is an MST of G'.  Then:

• Describe your algorithm.

• Prove that your algorithm determines whether T* is an MST of G'.

• Prove that your algorithm runs in time O(n).

You can assume T* and G' are given to you as adjacency lists.

Problem Two: Making Announcements (8 Points)
Suppose that you are in charge of the PA system at a school.  When you make an announcement 
over the PA system, all classes currently in session hear it.  There is a very important announce-
ment you need to make, and to ensure that everyone hears it, you want to announce it enough 
times to guarantee that every single class hears the announcement at least once.  Because some 
students might be in multiple classes during the day, you want to minimize the number of times 
that you have to make the announcement.  It's fine if you make the announcement two or more 
times during a particular class; it might be a nuisance, but your priority is ensuring that each class 
hears it at least once.

For example, if you were given the set of classes (denoted by their timespans), one possible set of 
times you could make the announcements is given by the vertical dotted lines:

This particular set of times isn't  a minimum set of times;  it's possible  to cover each class using 
only three announcements.

You are given as input a list of intervals representing the start and end times of each class.  Design 
a polynomial-time algorithm that finds a minimal set of announcement times that is guaranteed to 
reach every class.  Then:

• Describe your algorithm.

• Prove that your algorithm finds a minimal set of announcement times.

• Prove that your algorithm runs in polynomial time.

For simplicity, you can assume that no class starts as soon as another one ends and that when you 
start making the announcement all classes in session will hear it, including those that are just start-
ing or just ending.
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Problem Three: Tournament Dominating Sets (8 Points)
A tournament graph is a directed graph with n ≥ 1 nodes where every pair of distinct nodes has 
exactly one edge between them.  Intuitively, a tournament graph represents the result of a tourna-
ment in which every player plays exactly one game against every other player, where an edge 
(u, v) means that u beat v in her game against him.  For example, the following graph is a tourna-
ment graph:

★

★

For any graph G = (V, E), a dominating set is a set D  ⊆ V such that for every node v  ∈ V, at least 
one of the following are true:

• v  ∈ D, or

• There is a node u  ∈ D where (u, v)  ∈ E.

In other words, every node either belongs to the dominating set or is a child of a node in the domi-
nating set (or both).  The starred nodes in the above graph form a dominating set, though it's not 
the only dominating set in the tournament.

The set of all nodes is a dominating set for any graph G; the challenge is finding small dominating 
sets.  The problem of finding the smallest dominating set in a graph is NP-hard, and while it's un-
known whether it's still  NP-hard to find the smallest dominating set in a tournament graph, no 
polynomial-time algorithms are known for finding one.

However, it turns out that we can guarantee that there is a dominating set in a tournament graph 
that is not too large relative to the total number of nodes,  so even if we can't find the  absolute 
smallest dominating set in a tournament efficiently, we can still find a dominating set that is not 
too much larger than the smallest one.

Design a polynomial-time algorithm that, given a tournament graph containing  n nodes, finds a 
dominating set of size O(log n).  Then:

• Describe your algorithm.

• Prove your algorithm returns a dominating set of size at most O(log n).

• Prove that your algorithm runs in polynomial time.

An interesting aside – your algorithm shows that every tournament graph has a dominating set of 
size O(log n).  This means that we can find the smallest dominating set in a tournament graph by 
enumerating all subsets of V of size at most O(log n) in ascending order of size until we find one 
that is a dominating set.  Since there are nΘ(log n) subsets of V of size O(log n), this means that this 
problem can be solved in time nΘ(log  n).  Note that this function grows faster than any polynomial 
function but slower than any exponential function.  It's not known whether this problem is in P or 
is NP-complete, making it one of the few known problems in NP with this property.
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Problem Four: Fixing Clock Skew (10 Points)*

When designing hardware devices, certain signals – especially clock signals – need to physically 
arrive at multiple different devices at exactly the same time.  If they don't, the devices can get out 
of sync with one another, causing the hardware to malfunction.  This is called clock skew.

Suppose that you have n = 2k different components that all need to receive a clock signal at ex-
actly the same time.  To do so, you create a perfect binary tree, where each internal node repre-
sents a junction and each leaf node represents one of the n components.  The clock signal origi-
nates at the root of the binary tree and propagates downward to the leaves.  Each edge (u, v) repre-
sents a wire, and the signal takes some amount of time t(u, v) to propagate across the wire.  Given 
arbitrary propagation times, there is no guarantee that the signal will arrive at all of the leaves at 
exactly the same time, and so you will need to introduce artificial delays into the system by in-
creasing the delays along some of the wires (you cannot decrease the delays).  The cost of adding 

delays into the system is given by the to-
tal amount of extra delay added to all the 
edges. For example, one way to remove 
clock  skew  from  the  tree  to  the  right 
would be to increase each edge so that it 
has delay 6.  This  has cost 44.  A better 
way to do this would be to raise the costs 
of all edges in the bottom layer to 6, all 
edges  in  the  middle  layer  to  5,  and  all 
edges in the top layer to 4.  This has cost 
36.  Even better solutions exist.

Design a polynomial-time algorithm for solving this problem.  Then:

• Describe your algorithm.

• Prove your algorithm finds the lowest-cost way to increase edge delays so that all root-leaf 
paths have the same total delay. (Hint: If two solutions disagree, there must be at least one 
deepest edge in the tree where they disagree.  Focus on any one of those edges.)

• Prove your algorithm runs in polynomial time.

Problem Five: Course Feedback (1 Point)
We want this course to be as good as it can be, and we'd appreciate your feedback on how we're  
doing.  For a free point, please answer the following questions.  We'll give you full credit no mat-
ter what you write, as long as you write something.

i. How hard did you find this problem set?  How long did it take you to finish?  Does that 
seem unreasonably difficult or time-consuming for a five-unit course?

ii. Did you attend office hours?  If so, did you find them useful?

iii. Did you read through the textbook?  If so, did you find it useful?

iv. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

v. Is there anything in particular we could do better?  Is there anything in particular that you 
think we're doing well?

* Adapted from Exercise 4.24 of Algorithm Design by Kleinberg and Tardos
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