
CS161 Handout 11

Summer 2013 July 29, 2013

Problem Set 5

This problem set explores greedy algorithms, spanning trees, and related topics. We hope that it
helps cement your understanding of “greedy stays ahead” arguments, exchange arguments, and
properties of trees.

Please be sure to write your answers different problems on separate pieces of paper to make
it easier for us to grade. Also, please put your name on each page of your assignment.

As always, please feel free to drop by office hours or send us emails if you have any questions.
We'd be happy to help out.

This problem set has 35 possible points. It is weighted at 12% of your total grade.

Good luck, and have fun!

Due Monday, August 5 at 2:15 PM

2 / 4

Problem One: Fixing an MST (8 Points)
Suppose that you've computed an MST T* for a graph G = (V, E). Afterwards, you add a new
edge (u, v) ∉ E to the graph with cost c(u, v). Depending on the shape of the graph, the initial
edge weights, and the weight of (u, v), your old MST T* might not necessarily be an MST of the
new graph G' = (V, E {(∪ u, v)}).

Assume that all edge weights in G' are distinct (which means that the edge weights in G are also
distinct). Design an O(n)-time algorithm that determines whether T* is an MST of G'. Then:

• Describe your algorithm.

• Prove that your algorithm determines whether T* is an MST of G'.

• Prove that your algorithm runs in time O(n).

You can assume T* and G' are given to you as adjacency lists.

Problem Two: Making Announcements (8 Points)
Suppose that you are in charge of the PA system at a school. When you make an announcement
over the PA system, all classes currently in session hear it. There is a very important announce-
ment you need to make, and to ensure that everyone hears it, you want to announce it enough
times to guarantee that every single class hears the announcement at least once. Because some
students might be in multiple classes during the day, you want to minimize the number of times
that you have to make the announcement. It's fine if you make the announcement two or more
times during a particular class; it might be a nuisance, but your priority is ensuring that each class
hears it at least once.

For example, if you were given the set of classes (denoted by their timespans), one possible set of
times you could make the announcements is given by the vertical dotted lines:

This particular set of times isn't a minimum set of times; it's possible to cover each class using
only three announcements.

You are given as input a list of intervals representing the start and end times of each class. Design
a polynomial-time algorithm that finds a minimal set of announcement times that is guaranteed to
reach every class. Then:

• Describe your algorithm.

• Prove that your algorithm finds a minimal set of announcement times.

• Prove that your algorithm runs in polynomial time.

For simplicity, you can assume that no class starts as soon as another one ends and that when you
start making the announcement all classes in session will hear it, including those that are just start-
ing or just ending.

3 / 4

Problem Three: Tournament Dominating Sets (8 Points)
A tournament graph is a directed graph with n ≥ 1 nodes where every pair of distinct nodes has
exactly one edge between them. Intuitively, a tournament graph represents the result of a tourna-
ment in which every player plays exactly one game against every other player, where an edge
(u, v) means that u beat v in her game against him. For example, the following graph is a tourna-
ment graph:

★

★

For any graph G = (V, E), a dominating set is a set D ⊆ V such that for every node v ∈ V, at least
one of the following are true:

• v ∈ D, or

• There is a node u ∈ D where (u, v) ∈ E.

In other words, every node either belongs to the dominating set or is a child of a node in the domi-
nating set (or both). The starred nodes in the above graph form a dominating set, though it's not
the only dominating set in the tournament.

The set of all nodes is a dominating set for any graph G; the challenge is finding small dominating
sets. The problem of finding the smallest dominating set in a graph is NP-hard, and while it's un-
known whether it's still NP-hard to find the smallest dominating set in a tournament graph, no
polynomial-time algorithms are known for finding one.

However, it turns out that we can guarantee that there is a dominating set in a tournament graph
that is not too large relative to the total number of nodes, so even if we can't find the absolute
smallest dominating set in a tournament efficiently, we can still find a dominating set that is not
too much larger than the smallest one.

Design a polynomial-time algorithm that, given a tournament graph containing n nodes, finds a
dominating set of size O(log n). Then:

• Describe your algorithm.

• Prove your algorithm returns a dominating set of size at most O(log n).

• Prove that your algorithm runs in polynomial time.

An interesting aside – your algorithm shows that every tournament graph has a dominating set of
size O(log n). This means that we can find the smallest dominating set in a tournament graph by
enumerating all subsets of V of size at most O(log n) in ascending order of size until we find one
that is a dominating set. Since there are nΘ(log n) subsets of V of size O(log n), this means that this
problem can be solved in time nΘ(log n). Note that this function grows faster than any polynomial
function but slower than any exponential function. It's not known whether this problem is in P or
is NP-complete, making it one of the few known problems in NP with this property.

4 / 4

Problem Four: Fixing Clock Skew (10 Points)*

When designing hardware devices, certain signals – especially clock signals – need to physically
arrive at multiple different devices at exactly the same time. If they don't, the devices can get out
of sync with one another, causing the hardware to malfunction. This is called clock skew.

Suppose that you have n = 2k different components that all need to receive a clock signal at ex-
actly the same time. To do so, you create a perfect binary tree, where each internal node repre-
sents a junction and each leaf node represents one of the n components. The clock signal origi-
nates at the root of the binary tree and propagates downward to the leaves. Each edge (u, v) repre-
sents a wire, and the signal takes some amount of time t(u, v) to propagate across the wire. Given
arbitrary propagation times, there is no guarantee that the signal will arrive at all of the leaves at
exactly the same time, and so you will need to introduce artificial delays into the system by in-
creasing the delays along some of the wires (you cannot decrease the delays). The cost of adding

delays into the system is given by the to-
tal amount of extra delay added to all the
edges. For example, one way to remove
clock skew from the tree to the right
would be to increase each edge so that it
has delay 6. This has cost 44. A better
way to do this would be to raise the costs
of all edges in the bottom layer to 6, all
edges in the middle layer to 5, and all
edges in the top layer to 4. This has cost
36. Even better solutions exist.

Design a polynomial-time algorithm for solving this problem. Then:

• Describe your algorithm.

• Prove your algorithm finds the lowest-cost way to increase edge delays so that all root-leaf
paths have the same total delay. (Hint: If two solutions disagree, there must be at least one
deepest edge in the tree where they disagree. Focus on any one of those edges.)

• Prove your algorithm runs in polynomial time.

Problem Five: Course Feedback (1 Point)
We want this course to be as good as it can be, and we'd appreciate your feedback on how we're
doing. For a free point, please answer the following questions. We'll give you full credit no mat-
ter what you write, as long as you write something.

i. How hard did you find this problem set? How long did it take you to finish? Does that
seem unreasonably difficult or time-consuming for a five-unit course?

ii. Did you attend office hours? If so, did you find them useful?

iii. Did you read through the textbook? If so, did you find it useful?

iv. How is the pace of this course so far? Too slow? Too fast? Just right?

v. Is there anything in particular we could do better? Is there anything in particular that you
think we're doing well?

* Adapted from Exercise 4.24 of Algorithm Design by Kleinberg and Tardos

c₁ c₂ c₃ c₄ c₅ c₆ c₇ c₈

1

 4

2

 6

3

 3

1

 4

3 2 1 5

4 1

